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a b s t r a c t

This paper is to study source inversion and identification of hazardous gas dispersion in a three-dimen-
sional urban area. An unsteady adjoint transportation model was adopted, and an advanced numerical
scheme based on adaptive mesh refinement was used. A time-dependent concentration database over
the entire parameter space was generated. Markov Chain Monte Carlo sampling based on the Bayesian
inference was used to invert the parameters such as source location and its strength obtained from
the database at different sampling time of sensor readings and simulation results. The probability distri-
butions of source parameters were calculated and predicted source location and strength agree well with
actual values which indicates the feasibility of the proposed method and procedure. Numerical studies
also show that the computational scheme is efficient when using unsteady adjoint transportation equa-
tion with MCMC methods. The unsteady inversion method proposed here can also improve the accuracy
of source location in the wind direction compared with the steady inversion method for the case of atmo-
spheric release of hazardous materials.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Urban safety has received more attention recently due to the in-
creased population and high possibility of terrorist attack involving
release of hazardous CBR (chemical/biological/radiological) mate-
rials in a city. When the materials accidentally release in an urban
center, it is critical to predict the transport characteristics of the
plume so as to effectively make strategical planning for the man-
agement of emergency response. In general the atmospheric trans-
port of hazardous CBR materials can be predicted through either
analysis or simulations [1,2]. Spalding et al. have made tremendous
contribution to computational fluid dynamics society through
advancing and developing numerical methods for various indus-
trial applications [3,4]. The most distinguished achievement is
the development of well known computational software- PHOE-
NICS. After Spalding’s work, much development has also been
made in the computational field to cater for various demands in
applications. However, most developments were to tackle the
known source location and strength. For the terrorist attack and
other hazardous CBR agent release, source conditions are often
unknown or limited. This requires the development of an efficient
method to determine the source location and its strength from
sensor network distributed in the city, combined with weather
ll rights reserved.
conditions such as wind velocity, direction and humidity, for rapid
emergency response.

The source inverse modeling can be categorized into direct,
optimized and probabilistic approaches. The direct approach solves
heat conduction or mass transportation equation reversely to ob-
tain the function or parameter estimation. The direct approach
can be sub-categorized by analytical or numerical methods which
have been applied to the development of inversion techniques in
atmospheric constituent transport [5] and solving the inverse heat
conduction problem (IHCP) [6–12]. The optimized method, has
been used to seek the source parameters that is best-fitted through
matching simulation and measurement. Different optimization
techniques have been successfully used in the past for estimation
of source parameters and functions [12–15]. The probabilistic ap-
proach has been used to obtain the probabilities of the source
parameters in the region surrounding the critical point with intro-
ducing the measurement error and simulation error. An important
probabilistic approach is within the Bayesian context. Wang et al.
[16,17] used the Bayesian inference and Markov Chain Monte Carlo
(MCMC) sampling for the solution of IHCP. Chow et al. [18] applied
the Bayesian methodology to inverse the source for atmospheric
release of hazardous CBR materials in the urban area. In general
the method is time-consuming. To improve the efficiency, Keats
et al. [19] introduced the adjoint equation to inverse the release
source solving the concentration field. In practice in the early per-
iod of the release event, the concentration field is unsteady and the
data from the sensors vary with time continuously. The dynamic

mailto:ryang@tsinghua.edu.cn
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


Nomenclature

C forward concentration (kg/m3)
D diffusion coefficient (m2/s)
F modeled concentration (kg/m3)
F(t) modeled data at time t (kg/m3)
G adjoint concentration (m�2)
N length of the Markov chain
p(X) prior probability of source parameters
p(XjY) conditional probability of source parameters
p(YjX) likelihood probability
p(YrepjY) sampling distribution of Yrep

Q source release rate (kg/s)
R sensor location (m)
S source strength (kg/m3 s)
T true concentration (kg/m3)
T(t) true data at time t (kg/m3)
~V velocity (m/s)

X source parameter
Xa the early segment of Markov chain
Xb the late segment of Markov chain
x source location in x direction (m)
Y measurement concentration (kg/m3)
Yrep hypothetical replications of the measurement data (kg/m3)
Y(t) measurement data at time t (kg/m3)
y source location in y direction (m)
z source location in z direction (m)
Greek symbols
d the thinning interval
q the degree of autocorrelation
e measurement error (kg/m3)
rf standard deviation of model error (kg/m3)
ry standard deviation of measurement error (kg/m3)
h mean of the Markov chain
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inversion is therefore essential for real-time identification of
source. Johannesson et al. [20] proposed the Sequential Monte Car-
lo (SMC) method to inverse the unsteady dispersion process of
atmospheric release. In their model, a rather simple Gaussian puff
model is employed which results in an analytical solution for the
adjoint equation. This simple model is however unable to charac-
terize the complex flow field and special phenomenon of the con-
centration transportation in an urban area.

In this paper, an unsteady dispersion process of hazardous CBR
materials release in an urban environment is studied. The Bayesian
probabilistic approach is adopted to make three-dimensional dy-
namic inversion to obtain the source location and strength. To con-
struct a transient concentration database over the entire parameter
space, an unsteady adjoint transportation equation is solved numer-
ically using finite volume method with adaptive mesh refinement.

2. Fundamentals of inversion model

The detailed fundamental of the Bayesian inversion model was
provided by Chow et al. [18] and Keats et al. [19]. Following their
work, an unsteady dispersion process and dynamic source inver-
sion model are studied in this paper. For the completeness of the
paper, some of the formulations are repeated here.

2.1. Bayesian inference

The Bayesian theorem is used to determine the possibility of an
event X occurring conditional on another event Y. This possibility is
called the posterior possibility distribution, which is related to the
possibility of the event Y occurring conditionally on the fact that
event X has occurred [18].

pðXjYÞ ¼ pðYjXÞ � pðXÞ
pðYÞ / pðYjXÞ � pðXÞ ð1Þ

When the CBR source releases in an urban area, the concentration of
the toxic gas can be measured from an array of sensors. From a
Bayesian perspective, there is no fundamental distinction between
the measurement data and the source parameters. They are all con-
sidered as random quantities. Let X = {X1,X2, � � � ,Xi, � � � ,Xn} denote
the source parameter or missing data, and Y = {Y1,Y2, � � � ,Yi, � � � ,Ym}
denote the observed data or measurement data. Then p(XjY) charac-
terizes the conditional possibility distributions of the source param-
eters (location, strength, and so on) considering the measurement
data from sensors distributed in the urban environment. p(X)
denotes the prior distribution of the source parameters which is
determined through all available prior information. p(YjX) denotes
the likelihood function [18,20].

2.2. Likelihood function and errors

From Eq. (1), the likelihood is an essential function which is
related to the prior distribution and the posterior distribution
through the likelihood of the discrepancy of the measurements
from sensors and numerical predictions. The discrepancy can be
obtained by difference from measurements and simulations, so
uncertainty analysis can be performed. Let Y ðtÞ ¼ fY ðtÞ1 ;Y

ðtÞ
2 ; � � � ;

Y ðtÞi ; � � � ; Y
ðtÞ
k g denote the observed data at sensors at time t and let

FðtÞ ¼ fFðtÞ1 ; F
ðtÞ
2 ; � � � ; F

ðtÞ
i ; � � � ; F

ðtÞ
k g denote the predicted concentration

at sensors at time t which are obtained through performing a for-
ward dispersion calculation by a numerical model. Both measure-
ments and simulations have errors. Let TðtÞ ¼ fT ðtÞ1 ; T

ðtÞ
2 ; � � � ;

TðtÞi ; � � � ; T
ðtÞ
k g denote the true concentration value at sensors at time

t. The observed data are assumed to be related to the true value as
Y ðtÞi ¼ T ðtÞi þ eðtÞi , where eðtÞ ¼ feðtÞ1 ; e

ðtÞ
2 ; � � � ; e

ðtÞ
i ; � � � ; e

ðtÞ
k g are the inde-

pendent Gaussian distributed measurement errors with zero mean
and a known standard deviation rðtÞy at time t. So the observed data
can be written as Y ðtÞi � GauðTðtÞi ;r

ðtÞ2
y;i Þ, or [19]

p Y ðtÞi TðtÞi ;
��� X

� �
/ exp �

Y ðtÞi � TðtÞi ðXÞ
h i2

2rðtÞ2y;i

8><
>:

9>=
>; ð2Þ

Similarly, the likelihood of the modeled data can be written as [19]

p TðtÞi Xj
� �

/ exp �
TðtÞi ðXÞ � FðtÞi ðXÞ
h i2

2rðtÞ2f ;i

8><
>:

9>=
>; ð3Þ

Since unsteady inversion model is discussed here, all the concentra-
tion data will depend on the time. It is different from the original
work by Chow et al. [18] and Keats et al. [19], the likelihood func-
tion needs to be deduced and restudied considering time issue.

If the measurement error and model error at any sensor at any
time are assumed to be independent, the likelihood function can be
written as follows:

pðY jXÞ ¼
Yn

t¼1

Yk

i¼1

p Y ðtÞi Xj
� �

/ exp �
Xn

t¼1

Xk

i¼1

FðtÞi ðXÞ � Y ðtÞi

h i2

2 rðtÞ2f ;i þ rðtÞ2y;i

h i
8><
>:

9>=
>; ð4Þ
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Substituting (4) to (1), the posterior distribution of the source term
X can be obtained as follows:

pðXjYÞ / pðXÞ exp �
Xn

t¼1

Xk

i¼1

FðtÞi ðXÞ � Y ðtÞi

h i2

2 rðtÞ2f ;i þ rðtÞ2y;i

h i
8><
>:

9>=
>;
,

pðYÞ ð5Þ

where

pðYÞ¼
Z

pðY jXÞpðXÞdX/
Z

exp �
Xn

t¼1

Xk

i¼1

FðtÞi ðXÞ�Y ðtÞi

h i2

2 rðtÞ2f ;i þrðtÞ2y;i

h i
8><
>:

9>=
>;pðXÞdX

ð6Þ
1

234

5

source
sensor
buildingwind direction

Fig. 1. The schematic of the buildings, source and sensors (planform).
2.3. Markov Chain Monte Carlo sampling

Up to now, the final form of the posterior possibilities of the
source term has been obtained. However, if the posterior possibil-
ities are computed according to Eq. (5), the integral throughout the
entire domain of the parameter space has to be evaluated numer-
ically using Eq. (6). Considering the dimensionality of the source
term X is large, and the computation involved forward simulation
FðtÞi ðXÞ is also time-consuming, the calculation using Eq. (5) is pro-
hibitively expensive. An alternative method is to use the Markov
chain technique to generate a collection of realization which has
the posterior distribution of the source term as its limiting station-
ary distribution. The samples in the chain can then be used to con-
duct inference. Detailed implementation of the sampling algorithm
is described in [18,20].

2.4. Unsteady adjoint equation

From Eq. (5), numerical predicted concentrations FðtÞi ðXÞ at the
given sensor (monitor) sites at prescribed time points for the given
source term parameters are necessary to obtain the likelihood
function. The unsteady advection-diffusion equation for concentra-
tion must be therefore solved.

@C
@t þ ~V � rC �r � ðDrCÞ ¼ S X 2 X

b:c:rC �~n ¼ 0 X 2 @X
i:c:CðX; t ¼ 0Þ ¼ 0

8><
>: ð7Þ

It is assumed that the concentration field has no impact on the
velocity field, Eq. (7) is therefore a linear one. The concentration
FðtÞi ðXsÞ at the given sensor site Ri at time t can then be broken down
into additive contributions from each time interval [20]:

FðtÞi ðXsÞ ¼
Xt

tk¼t0

C 0ðRi;Xs; t; tkÞQ ð8Þ

where C
0
(Ri,Xs,t,tk) denotes the concentration at the given sensor site

Ri at time t due to a unit point source release at the location Xs with-
in the time interval (tk�1,tk), and Q is the source release rate.

To avoid repeated computation during the sampling and make
the inversion efficient, before MCMC sampling, we need to solve
Eq. (7) for all the possible source parameters and store the solu-
tions in a database. That is to say, one forward simulation has to
be carried out for each of the possible combinations of source loca-
tion and strength. Generally there are more than thousands of
combinations. The traditional approach is to solve the unsteady
advection-diffusion Eq. (7) enormous times to obtain all the possi-
ble solution FðtÞi ðXsÞ. The calculation is extremely time-consuming.

Considering the number of the sensors is much less than that of
the possible source locations, Keats et al. [19] solved an adjoint
advection-diffusion equation. Although the computational time is
nearly the same for original and adjoint equations, the adjoint
equation need to be solved only once for each sensor, which makes
the amount of calculation reduced dramatically. In this paper an
unsteady dispersion process and dynamic source inversion are dis-
cussed, and unsteady adjoint advection-diffusion equation [19] is
applied to improve the computing efficiency. The relationship be-
tween forward concentration and adjoint concentration consider-
ing time issue are deduced in detail as follows.

@G
@s � ~V � rG�r � ðDrGÞ ¼ dðX � X0; sÞ X 2 X

b:c:G~V �~nþ DrG �~n ¼ 0 X 2 @X
i:c:GðX; s ¼ 0Þ ¼ 0

8><
>: ð9Þ

Substituting Eq. (9) into

CðX 0; t0Þ ¼
Z t0

0
dt
Z

X
CðX; tÞdðX � X0; t � t0ÞdX ð10Þ

and defining a new time t = t
0 � s, we obtain:

CðX 0; t0Þ ¼
Z t0

0
ds
Z

X
C

@G
@s
� ~V � rG�r � ðDrGÞ

� �
dX ð11Þ

Using the incompressible condition and vector relations:

CðX 0;t0Þ ¼
Z t0

0
dt
Z

X
�@CG

@t
þGS�r�ðCG~VÞ�r� ðCDrGÞþr� ðDGrCÞ

� �
dX

ð12Þ

Through the divergence theorem, Eq. (12) can be written as:

CðX 0; t0Þ ¼
Z t0

0
dt
Z

X
� @CG

@t
þ GS

� �
dX

�
Z t0

0
dt
Z
@X
ðCG~V þ CDrG� DGrCÞ �~ndC ð13Þ

Substituting rC �~n ¼ 0;G~V �~nþ DrG �~n ¼ 0X 2 @X;GðX; t0 ¼ 0Þ ¼ 0
and C(X,t = 0) = 0 into Eq. (13), and considering a point source con-
tinuous release [19]:

CðX 0; t0Þ ¼
Z t0

0
QðtÞ � GðXs;X

0; t0 � t;0Þdt ð14Þ

The solution of Eq. (7) can then be expressed in terms of the solu-
tion of the adjoint Eq. (9). Similar to Eq. (8), the concentration at
the given sensor site Ri at the given time point t can be given as
follows:

FðtÞi ðXsÞ ¼
Xt

sk¼t0

GðXs;Ri; t � sk;0ÞQðskÞDsk ð15Þ
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where G(Xs,Ri,t � sk,0) denotes the adjoint concentration at the loca-
tion Xs at the given time point t � sk due to a unit point source re-
lease instantaneously at the sensor site Ri at the initial time.

In order to obtain the concentrations at the given sensor site Ri

at the given time point t due to the source release at different
locations:

ðXs1;Xs2; � � � ;Xsk; � � � ;XsnÞ

The unsteady advection-diffusion Eq. (7) has to be solved n times, if
(8) is used, while the unsteady adjoint Eq. (9) needs to be solved
only once, if (15) is used.

3. Results and discussion

3.1. Case description

In this case, the source inversion of an unsteady dispersion pro-
cess of the hazardous CBR materials release in a three-dimensional
urban environment is investigated. The dimension of the whole
domain is 500 m � 500 m � 100 m as shown in Fig. 1. There are
three buildings (cuboids) in this domain with dimensions of
30 m � 30 m � 25 m, 30 m � 30 m � 25 m and 20 m � 30 m �
20 m respectively. A point source located upwind from the build-
ings starts to release at a given time with a release rate of 0.8 kg/
m3 s. Its position coordinate is (�50 m, � 225 m,5 m) (The origin
of the coordinate axis is placed at the center of the domain). The
distance between the source and its nearest building is 55 m. Five
sensors located in this domain can record the atmospheric concen-
trations and report the data every 10 s. Each sensor provides time-
dependent concentrations for a total of seven 10-s intervals from
30 s to 100 s. The wind speed is 5 m/s. The wind direction parallels
the y axis. Both sensor and model errors exist. In this paper, two
errors are incorporated into one error parameter r, and
r2 ¼ r2

f þ r2
y (in this case, r = 0.4), see [21]. The error distribution

is assumed to be steady.

3.2. Forward numerical model

According to the analysis of aforementioned Section 2.4, unstea-
dy adjoint Eq. (9) needs to be solved for each of possible source
parameters and results should be stored in a database before
MCMC sampling. Before it, the flow field around the buildings
should be solved. A three-dimensional incompressible time-
dependent flow code based on Cartesian grids, Gerris [22], is em-
ployed to solve the Navier–Stokes equations and concentration
Fig. 2. The adapted grids on a horizon
scalar equation. In this code, the second-order approximate projec-
tion method based on the collocated grid [23,24] is adopted. De-
tails are described in [22]. The code is applied to simulate
atmospheric flow around obstacles within a large spatial domain
and validated by comparing with experimental measurements
[25].

To improve the efficiency and accuracy, adaptive mesh refine-
ment technique in Gerris is adopted. In our case, two refinement
criterions are used, based on the norm of the local vorticity and
the gradient of the adjoin concentration to adjust the grids dynam-
ically. All of the cells which do not satisfy the refinement criterion
are coarsened, otherwise refined. Fig. 2 shows the adapted grids on
a horizontal plane (z = 0) at different times. The spatial resolution
is about 0.97 m near the buildings and is adapted down to a max-
imum scale of 25 m in the z direction. And the number of grids is
decreased from 267,934 to 46,269 dynamically.

According to Section 2.4, an unsteady concentration database
for all possible source locations need to be generated before MCMC
sampling. If using the original concentration Eq. (7), the simulation
has to be performed 131,220 times because the source location
space is discretised to 81 � 81 � 20 grids, while the adjoint con-
centration Eq. (9) need to be solved only five times since there
are five sensors. The ratio of computation between two methods
is about 131220:5. The computation is therefore efficient by using
adjoint concentration equation. Fig. 3 shows the temporal variation
of the concentration at five sensors due to a unit point source re-
leases at the actual location through solving the adjoint Eq. (9).
In order to make comparison, the figure also shows the concentra-
tion predicted by solving the original forward concentration Eq.
(7). From the figure we can see that the concentrations predicted
by the adjoint Eq. (9) agree well with those by the forward concen-
tration Eq. (7).

3.3. Inversion results

The Markov chain is initialized at the center of the domain, and
converged to the vicinity of the actual source location after a burn-
in period. The length of the whole Markov chain is 40,000. To make
it a fully mixing chain and ‘forget’ its starting point, the first half of
the samples (20,000 iterations) are discarded and the second half
of the chain is used to make the inference.

Samples from the MCMC algorithms are usually autocorrelated,
due to the inherent Markovian dependence structure. The degree
of autocorrelation can be quantified using autocorrelation
function:
tal plane at (a) 10 s and (b) 100 s.
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q ¼ CovðXt;XtþdÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXtÞvarðXtþdÞ

p ¼ E Xt � hð ÞðXtþd � hÞ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E Xt � hð Þ2
h i

E Xtþd � hð Þ2
h ir

¼
PN�d�1

i¼0 ðXiþd � �XÞðXi � �XÞ=ðN � dÞPN�1
i¼0 ðXi � �XÞ2=N

ð16Þ

Significant autocorrelation suggests the chain need thinning every d
samples prior to use of the posterior statistics for inference. Fig. 4
shows the degree of autocorrelation q as a function of thinning
interval d in the Markov chain, and from the figure, the autocorre-
lation is small enough to conduct inference when the interval d is
larger than 20.

The statistical convergence to the posterior distribution for the
Markov chain is detected using a time-series approach, first pro-
posed by Geweke [26], which compares the mean and variance
of the segments from the beginning and the end of the single chain.
z�score ¼
�Xa � �Xbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðXaÞ þ varðXbÞ
p ð17Þ

where Xa is the chain with the early segment and Xb is the chain
with the late segment. If z�score of these two segments are similar
and fall within 2 standard deviation of zero, it can provide the evi-
dence for convergence. Fig. 5 shows z�score of the difference be-
tween various initial segments and the last half of the remaining
chain. The label on the x axis in the figure denotes the start point
of initial segment Xa. From the figure, the majority of points fall
within 2 standard deviation of zero, indicating that the sampling
points are proper to generate the posterior distribution of source
parameters.

The posterior probabilities of the source parameters are
shown in Fig. 6, using the histogram plots, which quantified
the marginal probability distributions of the source locations
(x,y,z) and its strength. From four figures, the peaks of the histo-
grams are all located in the vicinity of actual source parameters.
Fig. 7 shows two-dimensional joint probability distributions
of the source location on three planes which are z = 5 m,
y = �225 m, x = �50 m respectively along with the location of
sensors and the true location of the source. The peaks of the
joint probability distributions on three planes also coincide with
the actual location of the source. Fig. 8 shows the 80% confi-
dence contour of the source location, indicating that 80% confi-
dence that the source is located within the iso-surface. The
probabilistic predictions of the source location with a certain
confidence are more important for emergency manager than an
optimal source location without any uncertainty analysis using
the optimization approach.

Table 1 shows the summary statistics of the source parame-
ters generated from the MCMC samples. The posterior expecta-
tion (mean) of the source parameters are close to the actual
value. The largest location deviation is less than 2 m with the
relative error 3.8%. And the mean of the strength deviation is
0.015kg/m3s with the relative error 1.8%. The standard deviation
in y direction is larger than those in other directions, indicating
that the y of the source location can be more uncertain, since a
weaker source closer to the sensor in the wind direction can
generate similar concentrations to a stronger source far away
from the sensors. This conclusion is the same as that made by
Chow [18]. Because the time-dependent concentration informa-
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tion is added, compared with the steady reversion (the mean
deviation is 6.4 m and the standard deviation is 22.1 m, see
our previous work), unsteady reversion method can improve
the accuracy of source location in the wind direction.

3.4. Model check using posterior predictive simulation

Since the draws X = {X(1),X(2), � � � ,X(t), � � � ,X(n)} from the poster-
ior distribution using the Markov chain simulation have been
obtained, a Bayesian test of model fit using the posterior predic-
tive distribution proposed by Gelman et al. [27] can be
employed.

The sampling distribution of measurement data Yrep given the
source parameters can be written as follows:

pðYrepjYÞ ¼
Z

pðYrepjXÞpðXjYÞdX ð18Þ

Then N hypothetical replications of the data
Yrep
k ¼ Yrep;ð1Þ

k ; Yrep;ð2Þ
k ; � � � ;Yrep;ðtÞ

k ; � � � ; Yrep;ðnÞ
k

n o
can be drawn from this distribution. If the model is reasonably accu-
rate, the hypothetical replications of the data from the Markov chain
of the source parameters should look similar to the observed data Y.

Since the number of the observed data is large, we choose a
function TðYrepÞ ¼

Pn
k¼1Yrep

k =n, the average of the measurement
data instead of Y itself, as the discrepancy variable to perform
the posterior predictive model check. Then a p-value can be
estimated by calculating the proportion of the cases in which
the simulated discrepancy variable exceeds the observed data.

p� value ¼ 1
N

XN

i¼1

I½TðYrep;ðiÞÞP TðYÞ� ð19Þ

where I is the function which takes 1 when the argument is true and
0 otherwise. This measure compares the deviance of the observed
data from the actual source parameters to deviance of the simulated
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Fig. 7. The two-dimensional joint probability distributions of the source location on the plane.
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Table 1
The summary statistics of the source parameters.

Parameters True Mean Standard deviation

x/m �50 �48.03 7.98
y/m �225 �223.56 12.91
z/m 5 5.90 1.24
Q/(kg m�3 s�1) 0.80 0.815 0.112
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data from the trace of the source parameters. So the p-value should
be close to 0.5 for a well-fit model.

Fig. 9 shows the histogram of T(Yrep) using the hypothetical
replications of the data from the Markov chain of the source
parameters, with the observed data T(Y), indicated by the verti-
cal line. From the figure, the observed data T(Y) is very close to
the peak of the posterior prediction distribution, with the p-va-
lue 0.46, computed using (27), which indicates that the model
is very good fit.
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4. Conclusions

Unsteady dispersion of hazardous CBR materials release in
three-dimensional urban environment has been simulated. The
Bayesian probabilistic approach along with the Markov Chain
Monte Carlo sampling and unsteady adjoint transportation equa-
tion based on adaptive mesh refinement technique have been
adopted to determine and identify the location and strength of
the source. Successful dynamic inversion indicates the feasibility
of the proposed method and procedure. From the results, the
peaks of the marginal probability distributions and the joint
probability distributions on three planes are all coincide with
the actual source parameters. The largest deviation for the mean
of the source location is less than 2 m with the relative error
3.8%, while the mean of the strength deviation is 0.015 kg/m3 s
with the relative error 1.8%. Meanwhile, model check using pos-
terior predictive simulation also shows the inversion model is
very well fit. In addition, using the unsteady adjoint advection-
diffusion equation and adaptive mesh refinement technique,
the computation is more efficient especially in the unsteady
inversion process. We also found that unsteady inversion meth-
od can improve the accuracy of source location in the wind
direction compared with the steady inversion method, since con-
centration value at different time sampling points can be added
sequentially in the inversion process. In our previous steady
inversion case, the standard deviation of source location in wind
direction is 22.1 m, while using unsteady inversion, the standard
deviation is reduced to 12.91 m. Thus the time-dependent con-
centration information can be used to reduce uncertainty in
source location prediction.
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